Nov 21, 2024  
2017-2018 Undergraduate Bulletin 
    
2017-2018 Undergraduate Bulletin [ARCHIVED BULLETIN]

Biomedical Engineering, B.S.B.E. (Electrical Engineering Concentration)


Return to {$returnto_text} Return to: Programs for CETA

Program Information


Program Director: Nowak

The practice of medicine has seen an accelerated incorporation of technical innovations. Biomedical Engineering has emerged as a medium combining medicine and engineering to provide materials, tools and techniques advancing health care research, diagnosis and treatment. Under the auspices of the Interdisciplinary degree of Bachelor of Science in Engineering, highly motivated students who wish to focus their engineering careers on assisting in the struggle against illness and disease may concentrate their efforts in Biomedical Engineering.

The Biomedical Engineering Program encompasses three concentration options: the standard option, a premed option, and an electrical engineering option. The standard option presents the student with a solid and diverse background in solid mechanics, fluid mechanics, biomaterials, and instrumentation aspects of the field. The premed concentration modifies the standard option to include Organic Chemistry, to allow the student to pursue a career in the health professions. The electrical engineering concentration is designed for those who wish to focus on the design, evaluation, and maintenance of electronic medical instrumentation. Electrical Engineering concentration students who choose an appropriate professional elective, and achieve the required grades, will be granted a minor in Electrical Engineering upon graduation. All concentrations share the same basic program requirements, with additional courses for their special interests.

Educational Objectives


The Biomedical Engineering program seeks to prepare qualified students for productive, rewarding careers in the engineering profession, either for entry-level practice in biomedical engineering or for entrance into appropriate graduate programs. During their careers, our alumni

  1. will become successful practicing engineers in biomedical engineering fields and will advance professionally by accepting responsibilities and, potentially, pursuing leadership roles;
  2. those who enter the health professions will utilize their engineering knowledge in this pursuit;
  3. will, as contributing members of multidisciplinary engineering teams, successfully apply the fundamentals of engineering analysis and engineering design to the formulation and solution of emerging technical problems.

The engineering design experience is distributed over the entire engineering curriculum. This experience begins in the first year with engineering and design and continues through and culminates in Senior Research and the senior Biomedical Engineering Design Project I and II. The senior-level design work ensures that the students have mastered preparatory engineering and engineering science courses.

Basic concepts of physics, chemistry, and mathematics are the foundations on which all engineering education is built. Basic tools of engineering, such as graphic communications, computer usage, mechanics, and thermodynamics complete the introductory phase of the program.

All Biomedical Engineering program graduates are required to complete courses designed to give the students a grounding in anatomy and physiology, biomechanics, biofluids, bioinstrumentation, and the structure of materials used by biomedical engineers. Along with the engineering courses, students are required to obtain a background in solid mechanics and electrical engineering.

Extensive laboratory experience augments the course work. There are required laboratory classes in the sciences, materials, engineering, and natural phenomena. Written communication of laboratory results is required.

Through participation in the All-University Curriculum and additional elective courses in the humanities and/or social sciences, students are given the opportunity to broaden their perspectives and to take part in the larger learning community of the University. It is imperative that engineers understand and appreciate the special role that technology plays in our society, as well as the interactions among the various components of our society.

The Biomedical Engineering program has three basic concentrations: the standard, one designed for those students who wish to enter the health professions, and the electrical engineering concentration. Those students who wish to enter health professions are required to take a full year of organic chemistry prior to their senior year.  All students who are interested in the health professions are required to join the pre-health professions program. The Pre-Health Profession Advisory Committee has developed a 1-credit course for each of the first three undergraduate years to help students prepare for health profession graduate school applications.

Requirements for Bachelor of Science in Biomedical Engineering


Biomedical Engineering (Electrical Engineering Concentration)

134 credits 1
Credits in the major: 73 10

Freshman Year


First Semester (16 credits)


Second Semester (17 credits)


Sophomore Year


Junior Year


Senior Year


First Semester (15 credits)


Second Semester (18 credits)


Return to {$returnto_text} Return to: Programs for CETA